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THE ARRAY OF REMAINDERS

Remainders of successive division by a given divisor are organized in a particular order
and placed in a matrix. The matrix thus formed will bear thought-provoking properties
and useful applications in number theory which will be revealed in length below:

Throughout this paper, N will represent the set of natural numbers (1, 2, 3, ...) and
W will stand for the set of whole numbers (0, 1, 2, 3, ...).

DEFINITION: Let d be a positive integer other than 2".5%, k2", k.5""" (u, v, k e W).
Let N be a natural number (N <d). Let Ry, Ry, ..., R, be successive remainders of N/d
such that N=R; (mod d), 10R; =R, (mod d), ... 10R,; =R, (mod d), (0 <R, <d). Then,
we define “x” to be the Remainder Generating Coefficient (R.G.C) if x is the smallest
positive integer to satisfy the following system of congruencies:

XN =R; (modd)
xR; =R, (modd)
A xR, =R; (modd)
ooe (mod d)
xR,_1 =R, (modd)

DERIVATION OF R.G.C: Although x can be found by solving A, it is more convenient
to use the formula: x =(kd + 1)/ 10, ke N, k <10.

Please note that k must be chosen such that 10 | (kd + 1). This can be accomplished by
the following assignment:

whend=...1
whend=...3
whend=...7
whend=...9

~ R R R
|
— N WO

The proof is omitted here for the sake of brevity.

EXAMPLE 1: Find k and x for whena)d=7,b)d=16andc)d=19
SOLUTION:
a) d=7 = k=7 (from table B)
x=(kd +1)/10=(49 + 1)/10 = 5.

b) d=16 does not satisfy the definition of d.
¢) d=19 = k=1 (from table B)

x=(kd+1)/10=(19+1)/10=2
Page 1 of 7




EXAMPLE 2: Derive the array of remainders for when d =7

SOLUTION:

Since no beginning point is given, let us begin with R; = 1 (this is when N = 1). In
example 1, we found x = 5 when d = 7. Thus, the successive remainders for d = 7 are:
Ry=5(1)=5. R3=5(5) (mod 7)=4. R4=5(4) (mod 7)=6. Rs=5(6) (mod 7) =2 &
R¢=5(2) (mod 7) =3.

Hence the entire remainder matrix for divisor 7 is: {1, 5, 4, 6, 2, 3}

PROPOSITION 1: If d=09,19,29,...,n9 then RG.C=1,2,3,...,n+1

PROOF: From the derivation of R.G.C, we have:
k=1 when d=09, 19, 29, ..., n9. Then
RGC=(kd+1)/10
=(1d+1)/10
=09+1,19+1,29+1,...n9+1)/10
=[10, 20, 30, 10(n + 1)]/ 10
R.GC=1,2,3,...,n+1

PROPOSITION 2: x =R.G.C is always smaller than d (d > 1)

PROOF: x can be largest when k = 9.
Inx=(kd+ 1)/10 let k=9, then
x=(09d+1)/100r x=0.9d+0.1. Clearly,x <d, Vvd>1.

PROPOSITON 3: x and d are relatively prime.
PROOF is omitted for the sake of brevity. We accept that (x, d) =1

DEFINITION: We define “C”, a positive integer to be the complement of Rif R+C=d

PROPOSITION 4: The successive remainders of a given d are complements of one
another in PAIRS either in the same column or in adjacent columns.

PROOF is omitted for the sake of brevity, however, we expound with an example:
EXAMPLE 3: Find the complement pairs when d = 7.
SOLUTION: In example 2, we found the remainder set = {1, 5,4, 6, 2,3} whend =7.

1 6 wherel +6=7
For clarity, let us divide the members into two columns:< 5 2 where5+2=7
4 3 whered4+3=7
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Next, we will see why R & C of d were both located in the same column.”

COROLLARY 1: Let p denote the number of distinct remainders generated by R.G.C
of d. Then p is even if remainders and their complements are located in the same column.

PROOF: From PROPOSITION 4 we know that complements appear in pairs; and that
there exits a complement for every remainder. Hence, p must be even.

PROPOSITION 5: If p is even then C, of R, (the complement of R in column n) is the
member p/2 + 1 in column n, where p is the number of distinct remainders as defined in
COROLLARY 1.

PROOF is trivial, however, it is omitted for the sake of brevity.

PROPOSITION 6: In an array of remainders, if p =k (k & N) in one column, then p =k
in every column where p introduced in COROLLARY 1 is the period of d.

PROOF is omitted for the sake of brevity.

PROPOSITION 7: The period of an array of remainders generated by R.G.C is:
p = (d—1)/n, where n is the number of columns in the matrix and n | (d — 1).

PROOF: By PROPOSITION 6, p is the same in every column of the matrix and there are
n columns. Since there are d — 1 remainders then (n)(p) =d— 1, hence, p=(d—1)/n.

COROLLARY 2: If an array of remainders consists of one column only, then the period
p is maximum.

PROOF: Inp=(d—1)/n,letn=1, then p=d— 1, a maximum value.

NOTE-1: p will be even since this occurs only when d is a prime number.
NOTE-2: The converse is not necessarily true —that is, not all primes yield max periods.

PROPOSITION 8: If p=d—1, then R and C share the same column.

PROOF: By COROLLARY 2, R consists of only one column. The R values are:
1,2,3,...,d—3,d—2,and d — 1 and there are equal pairs. Clearly,

1+d-1)=d
2+(d-2)=d
3+(d-3)=d

* Total number of columns of an array is determined by each pattern of d. The same divisor may
(or may not) generate different patters of mantissa for different dividends.
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We are now prepared to proceed with the last proposition in this paper: The topic of when
p=d—1 became the center of research for many years. At first it appeared as if d posing
as a prime number would generate the maximum period. Although this is a necessary
condition, however not sufficient. There are exceptions such as d = 71 and d =13.

While the true answer (for when p is max) was found long time ago, PROPOSITION 9
below offers an improved solution which will alleviate labor by 50%.

PROPOSITION 9: Let p be the period of d, d a prime number. Then p is maximum if:
109972 = Cp . (mod d) where ¢ is the Euler Phi function and Cpax = d — 1

PROOF: First, we will use the recommend solution in Number Theory, then we will
accelerate the process:

p=d—1if 10°?=1(modd)' <—  current solution (D)

By PROPOSITION 8, if p=d — 1, then every remainder will have a complement in
column 1. In particular, the complement of the first remainder is Cpax = d — 1, hence, by
PROPOSITION 5, we can check for the first occurrence of Cyax located at p/2 + 1.
Accordingly, we can substitute ¢(d) / 2 for ¢(d) to generate half of the remainders only.
Then we will substitute Cp,ax for 1 (the occurrence of the first complement). Thus:

P=d—1 if 10%Y2=Cp. (mod d) «— accelerated solution  (2)

EXAMPLE 4: Verify that divisor 7 has a maximum period of 6.
SOLUTION:
10992 = Cpax (mod d)

od)2=d-12=(T-1)2=3
Coax=d—1=7-1=6.

10°=6 (mod7) | V

In conclusion, let us consider two applications. The applications will take a careful look
at PROPOSITIONS 5, 7 and 9 which are the key to a series of fundamental problems in
theory of numbers.

* Please note both formulae (1) & (2) give the necessary condition and not the sufficient condition for p max.
For example, consider d = 11 where 10%=1 (mod 11), but manual examination shows p =2.
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EXAMPLE 5: Period for d =13 is 6. Period for d = 31 is 15. The complements of d = 13
are the same remainders in column 1 in descending order. However, the complements of
d = 31 are entirely new remainders found in column 2. Why?

SOLUTION: Let us construct the matrix of remainders for each divisor:

d=13 d=31
R C R C
1 12 1 30
3 10 2 29
4 9 4 27
9 4 5 26
10 3 7 24
12 1 8 25
9 22
2 1" 10 - 21
5 8 14 17
6 7 16 15
7 6 18 13
8 5 19 12
1" 2 20 11
25 6
28 3

Note that complements of 13 are inclusive and complements of 31 are exclusive.
Although both divisors 13 and 31 are prime numbers, neither has a maximum period.

First, we use PROP. 9 to verify that the period in each case is NOT maximum:

10°92 = Cppy (mod d)
13% 10° =/12 (mod 13)
31 * 10" =530 (mod31) ~

Second, we use PROP. 7 to verify the periods given for d = 13 & d = 31 are accurate:

p=@d-1)/n
13 (13-1)/2=6
31> (31-1)/2=15

Last, we apply Euler ¢ function to PROP. 9 to obtain the half-remainder number:
0(13)/2=12/2=6, anevennumber = 2|6 = two dependent columns for R & C
©(31)/2=30/2=15, an odd number = 2 }'15 = two independent columns for R & C

QED.
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n times

EXAMPLE 6: If d=11, 101, 1001,..., 10....3)1,then showp=2,4,6,...,2n

SOLUTION: First, we notice that d is a positive integer having no factors of 2 and 5,
thus the properties can be applied to find p for every d.

Next, we manually find the period and remainders for one of the given divisors. The
manual check is mainly for confirmation of data already provided. 11 seems to be the
most convenient divisor to explore where we find 5 columns each with a period of 2:

R, C)—(1,10),(2,9), (3, 8),(4,7), (5, 6). It can be seen R + C =11 in every column.

We use PROPOSITION 5 to confirm a period of 2 for d = 11 as follows:
p=(d-1)/n=(11-1)/5 = p=2, where n is the # of columns.

Finally, we seek a general solution for the entire set:

By Prop. 5, if there is a complement for each remainder then p = 2 times C-count.
So now we need to calculate the number of complements for each given d.

Total number of complements can be easily determined here: they are the number of
zeroes embedded in each given d because 11 = (10 + 1), 101 = (100 + 1), etc. Thus,

C =log (10%, 10%, 10°, ... 10"), then,
P=2(1,2,3,...,n) or
P=2,4,6,...,2n

DISCUSSION:
Calculating p for d =11 and d = 101 is a trivial matter because by Prop. 7:

p=(d-1)/n where pis period, d is devisor and n is the # of columns in the matrix
p=(11-1)/5=p=2 ..whend=11, thereare 5 columns each with a period of 2
p=(101-1)/25=p=4 ..whend= 101, there are 25 columns each with a period of 4

It is not trivial when d = 1001 however. The above formula does NOT fit:

6=(1001-1)/n = n=1000/ 6 which is impossible. Prop. 5 states either period is
maximum or there must be equal number of remainders and complements per matrix.

The logic we used in Example 6, correctly determines p = 6 when d = 1001, but the
formula derived in Prop. 7 will not work in this case: why?

The short answer is because 1001 is not a prime number. The long answer is,
“Wait, there is more to come on the presentation day...”
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EPILOGUE

The Division Algorithm (D = dQ + R) has been quite humble for its contributions to the

field of mathematics at large. It has been the building block for math and science —if not
directly then at least as a pedagogical tool.

One of those “esoteric” contributions is in computer science when a beginner student is
asked to write a pseudo-code to emulate R (the remainder) assuming the function did not
exist in any syntactical language. The student must intimately understand the division
algorithm in order to accomplish this task.

Still other applications of division algorithm are found in number theory and geometric
series. Number theory has long been fascinated by d (the divisor) while geometric series
have busily explored Q (the quotient).

The dividend (D) is often taken for granted. Theory of limits would be assimilated faster
if a student understood the difference between 1/0 and 0/0 while attending grade school.
Thanks to calculus, the student would ultimately learn the distinction in a section devoted
to “asymptotic behavior” of rational functions .

My mission in publishing The Array of Remainders has been to link the four components
of the division algorithm together (as a common map): to show how new properties and
applications can be developed once we fully realize the marvel of D =dQ + R.

* % %

1 Eynden, Charles Vanden, Number Theory, An Introduction to Proof, 1970, P 216
2 Rogawski, Jon, Calculus, Early Transcendentals, Second Edition, 2012, pp. 241-244
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