APPLICATIONS OF TREE EXPRESSIONS FOR ATOM AND BOND IDENTIFICATION
DISCRETE MATHEMATICS/LINEAR ALGEBRA WITH APPLICATIONS IN CHEMISTRY

MATTHEW HUDELSON
WASHINGTON STATE UNIVERSITY
DEPARTMENT OF MATHEMATICS
MHUDELSON@WSU.EDU
Applications of Tree Expressions for Atom and Bond Identification

Discrete mathematics/linear algebra with applications in chemistry

Tree expressions generalize continued fractions. We motivate the definition of a tree expression and provide a connection between tree expressions and quotients of determinants of specialized matrices. Finally, we demonstrate two applications of tree expressions for classifying atoms and bonds in chemical compounds by their local environments.

Matthew Hudelson
Washington State University
Department of Mathematics
Department of Mathematics, PO Box 3113, Washington State University, Pullman, WA 99164-3113
mhudelson@wsu.edu

Abstract

Tree expressions generalize continued fractions; a continued fraction is a tree expression where the tree in question is a path. In turn, the numerical value of a tree expression can be determined as the quotient of two determinants which facilitates a further generalization to graphs that contain cycles. We demonstrate two applications of such computations to classifying local chemical structures. The first uses the determinant quotient to categorize atoms by their local neighborhood structure whereas the second uses tree expressions directly to categorize bonds by their local structure. Such expressions form the basis for quick identification and classification schemes of local structures for chemical compound analysis and high-throughput drug design.