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                                  Abstract 

                  The calculation of dynamic value at risk (VaR), when  

cumulative investment and interest rate are correlative 

stochastic processes, is discussed. The dynamically  

relative value at risk (RVaR) is presented. Analysis 

 of sensitivity of relative value at risk to the change of  

important parameters is carried out with the help of  

Monte Carlo simulation. We also discuss dynamically  

expected shortfall (ES) and relative expected shortfall 

(RES). Comparison between VaR, RVaR, ES and  

RES is illustrated with an example. Finally, we study  

how to determine dynamic frequency equivalent level  

with an example. 
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Introduction 

In the 50’s years of last century, Markowitz (1952) presented modern portfolio theory. The theory 

uses standard deviation as the measure of risk. However, people find that standard deviation lets 

both positive and negative deviation as the measure of risks. It is biased. Actually, what people 

concern is negative deviation. Another problem is that people hope to use loss but not deviation to 

measure risks. As a result, the concept of value at risk is born at the right moment. Value at risk 

means the maximum loss in most bad condition predicted during a period of time, in normal market 

condition and at a certain confidence level. There are two kinds of methods to calculation value at 



risk. One is analysis method and another is Monte Carlo simulation (Jorion, 2001). Value at risk is 

one of most important risk measure. Linsmeier and Pearson (2000) explain the concept and 

methodology of VaR, They also discuss the advantage and disadvantage of the methods for 

calculating VaR. Klugman et al.(2012) show readers how to combine loss models and credibility-

based pricing models, and how to analyze loss over multiple time periods.  

Since Basel Accord is introduced, value at risk has become base and standard for financial 

institutions to carry out risk management and regulation of financial institutions. However, several 

studies assume that the investment return of investment portfolio follows multi-dimensional normal 

distribution. In fact, the distribution of the return of investment portfolio has characteristic of fat tail. 

That is, the data in tail is more than that of normal distribution. Using normal distribution to calculate 

value at risk will produce deviation. Moreover, the calculation of value at risk has another problem, 

that is, it does not consider interest rate as a stochastic process, therefore, it neglects the impact of 

interest risk on cumulative investment return and on value at risk. In addition, since value at risk is 

the absolute magnitude of the loss, it cannot be used to comparison between different probability 

distributions (stochastic processes). Mao (2008) discusses relative value at risk in single period 

when investment and interest rate are correlative stochastic processes. In this article, we present the 

calculation of dynamic value at risk and relative value at risk when cumulative investment and 

interest rate are two correlative stochastic processes in multi-periods. We also carry out numerical 

analysis with the help of Monte Carlo simulation.  

Wang and Li (2021) introduce a new distributional index, the probability equivalence level of value 

at risk -VaR and expected shortfall- ES (PELVE), which identifies the balancing point for the 

equivalence. They point out that both value at risk and expected shortfall are most popular risk 



measure used in banking and insurance, And they are widely applied for regulatory capital 

calculation, decision making, performance analysis and risk management.  

Expected shortfall measures the average losses over the defined threshold (typically set as the VaR 

at a given confidence level α). In other words, expected shortfall is a conditional mean value, given 

that the loss exceeds the (1 − α) percentile. It is also often called tail value at risk (TVaR) or expected 

shortfall (ES). Faroni et al., (2022) and Acerbi et al. (2001) examine the properties of Expected 

Shortfall in financial management. This measure is indeed demonstrated to have much better 

properties than VaR. They indicate that unlike VaR, ES is in general sub additive and therefore it is 

a Coherent Measure of Risk. Acerbi and Tasche (2002) compare some of the definitions of Expected 

Shortfall. They point out that there is one which is robust in the sense of generating a coherent risk 

measure regardless of the underlying distributions. Moreover, this Expected Shortfall can be 

estimated effectively even in cases where the usual estimators for VaR fail. Fuchs et al. (2017) prove 

several results on quantile or spectral risk measures and their domain with special consideration of 

the expected shortfall. They also present a particularly short proof of the sub additivity of expected 

shortfall. Wang (2020) study the axiomatic foundation for the expected shortfall. He presents four 

axioms for portfolio risk assessment. They are monotonicity, law invariance, prudence and no 

reward for concentration. It uniquely characterizes the family of ES. Wang (2020) further points out 

as a unique and most important characteristic, ES rewards portfolio diversification and penalize risk 

concentration. In this paper, we also discuss the approximate calculation and sensitivity analysis of 

dynamically expected shortfall and relative expected shortfall with two correlative stochastic 

processes of cumulative investment return and interest rate and with the help of Monte Carlo 

simulation. Finally, we study how to determine frequency equivalent level of VaR and ES. 



The external economic and social environment is uncertain and change with time. We use dynamic 

value at risk, relative value at risk, dynamically expected shortfall and relative expected shortfall to 

describe the regular pattern of these variables with time and forecast their future values so as to take 

preventive measure ahead of time. In this way, it can reduce or even avoid extreme disasters to occur.  

The remaining is organized as follows. The dynamic value at risk and relative value at risk with two 

corrective stochastic processes is defined and sensitivity analysis for VaR and RVaR is carry out in 

Section 2. In Section 3, dynamically expected shortfall (ES) and relative expected shortfall (RES) 

are discussed, and sensitivity analysis is conducted. Section 4 discusses how to determine frequency 

equivalent level of VaR and ES. Section 5 concludes the paper. 

 

2. Dynamic Value at Risk and Relative Value at Risk 

2.1 The calculation of dynamic value at risk with two correlative stochastic processes 

Assume that cumulative investment is tD , and the stochastic differential equation of tD under 

equilibrium martingale measure can be expressed as  

1 1t t tdD rD dt D dw= + ,             (1) 

where the interest rate follows an Ornstein-Uhlenbeck mean reverting stochastic process (Cox, 

Ingersoll and Ross, 1985):  

2( ) +t t tdr r dt r dw  = −               (2) 

In equations (1) and (2) 1w and 2w are two correlative Wiener processes with instant correlation 

coefficient 12 , denotes the volatility of interest rate, 1 indicates the volatility of investment, 

is the long run equilibrium interest rate, the gap between long run equilibrium and current level is 

presented by -r and  is a measure of the sense of urgency exhibited in financial markets to close 



the gap and gives the speed at which the gap is reduced, where the speed is expressed in annual 

terms. 

Assume that the return rate of investment at time t is tR , then  

1 1
t

t

t

dD
R rdt dw

D
= = +                  (3) 

By simulation, we can find empirical distribution. And further, we can obtain the value at risk at 

confidence level, 1- . That is  

,( ) T TVaR T ER R = − ,            (4) 

where TER  expresses the expected return rate of cumulative investment during period of 

forecasting, T. It is substituted by the means of samples. ,TR  is lowest return rate during period of 

forecasting. That is,                        

 , 1T TP R R   = − ,            (5) 

 and  ,TR  can be obtained through simulation of empirical distribution of return rate. We can 

calculate the value of VaR with the help of Monte Carlo simulation if the parameters of 

0 1 12, , , , , ,r T     are given.   

 

2.2 Calculation of dynamically relative value at risk 

There is a problem when comparing value at risk between different probability distributions 

(stochastic processes), that is, VaR only reflects absolute level of value at risk, but not relative level 

of value at risk. We can find from equation (4) that the higher the expected return rate of investment, 

the higher the value at risk if other conditions keep unchanged. Since it does not reflect the value at 

risk of return rate of unit investment, it is not possible to compare value at risk with different 

probability distributions (stochastic processes). It is similar to absolute error and relative error. It is 



necessary to use relative error rather than absolute error when comparison of errors of different 

objectives. For example, there are two probability distributions of return rate of investment, where 

one is with 0.15 expected return rate of investment, another is with 0.25 expected return rate of 

investment. They have same value at risk such as 0.10, but the level of relative value at risk is 

different. Obviously, the relative risk level with 0.15 expected return rate of investment is greater 

than that with 0.25 expected return rate of investment. 

Let relative value at risk be ( )RVaR T  expressed as  

,( )
( ) 1

T

T T

RVaR T
RVaR T

ER ER


 = = −  .         (6) 

Using Monte Carlo simulation, we can find ,TR   and TER   , further, we can easily find the 

relative value at risk. 

Examples: Assume that the parameters of two stochastic processes are  
 

1 0=0.5, 0.12, 0.17, 0.10, 0.05, =0.2, 1,2,3,4r T    = = = = =    Figure 1 and Figure 2 

are intersecting surfaces of dynamic empirical cumulative probability distribution and density of 

probability at time T=1,2,3,4 respectively. 

 

                Figure 1 Dynamically cumulative probability distribution 
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Figure 2 Dynamical density of probability 

Table 1 lists the values of value at risk and relative value at risk when time term of investment takes 

1,2,3,4. Figure 3 and Figure 4 describe the changes patterns of value at risk, relative value at risk 

and cumulative expected investment return rate. Table 1, Figure 3 and Figure 4 indicate that value 

at risk increases with the increase of T when 0.05 =  and 0.01 = respectively. However, 

the relative value at risk (RVaR) decreases with the increase of .T When T changes from 1 to 4, 

RVaR becomes smaller and smaller. It denotes that the risk of cumulative investment return rate of 

per unit tends to be smaller with time. The reason is that the return rate of cumulative investment 

increases with the increase of T    

 

Table 1 Values of value at risk and relative value at risk when time term T  takes different 

values.  

          1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     = = = = = =  

    T        1      2      3      4 

    
TER  0.1997    0.2337   0.2563    0.2709 

   
TR ，

    0.0450      0.0610   0.0750    0.0800 

   ( )VaR T
    0.1547    0.1727   0.1813    0.1900 

   ( )RVaR T
    0.7747    0.7390 0.7074  0.7019 

           1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.01, 0.2r     = = = = = =  

    T        1      2      3      4 

    
TER  0.1997    0.2337   0.2563   0.2709 

1

2

3

4

-0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

timereturn rate of investment

th
e
 d

e
n
s
it
y
 o

f 
p
ro

b
a
b
ili

ty



   
TR ，

    -0.010    0.0080   0.0130   0.0200 

   ( )VaR T
    0.2097  0.2257   0.2433   0.2509 

   ( )RVaR T
    1.0500    0.9658   0.9493   0.9262 

 

 

Figure 3 The change pattern of VaR and RVaR with time( =0.05 ) 

 

 

Figure 4 The change pattern of VaR and RVaR with time( =0.01 ) 

 

2.3 Sensitivity Analysis for VaR and RVaR 

In the following, we will conduct sensitivity analysis when important parameters 1 12, , , ,    

increase or decrease 20%. Table 2 through Table 6 lists the results of sensitivity analysis. Table 2 

through Table 6 shows that relative value at risk is most sensitive to the change of volatility of 
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cumulative investment return and it is also rather sensitive to the change of volatility of interest rate 

and to the correlation coefficient between interest rate and return rate of cumulative investment. 

Increase of volatility of cumulative investment return will greatly increase value at risk and the 

relative value at risk and vise verse. And also increasing the correlation coefficient between interest 

rate and return rate of cumulative investment will increase both value at risk and the relative value 

at risk and vise verse. It is interesting to notice that increase of interest rate will decrease value at 

risk but increase relative value at risk. Therefore, it is important to consider the impact of the 

volatility of interest rate and the correlation coefficient between interest rate and volatility of return 

rate of cumulative investment on value at risk and relative value at risk. It is also important to 

decrease the risk of interest rate so as to decrease relative value at risk. For sensitive factors 

(parameters), it is necessary to estimate the values of these important factors (parameters) as 

accurate as possible. Table 2 through Table 6 also indicates that the change of parameters does not 

change the direction of value at risk and relative value at risk. In all cases, value at risk increases 

with time, however, the relative value at risk decreases with time. Regulators must consider both 

value at risk and relative value at risk in their regulatory decision. 

Table 2 Values of value at risk and relative value at risk when =0.5(1 0.2)   

       1 0 12=0.5(1 0.2), 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     + = = = = = =  

    T        1      2      3      4 

    
TER      0.2039    0.2278   0.2530 0.2614 

   
TR ，

     0.0500    0.0600   0.0750   0.0800 

   ( )VaR T
     0.1539    0.1678   0.1780   0.1814 

   ( )RVaR T
     0.7548    0.7366   0.7036 0.6940 

        1 0 12=0.5(1 0.2), 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     − = = = = = =  

    T        1      2      3      4 

    
TER     0.1940   0.2314   0.2760    0.2840 

   
TR ，

    0.0400   0.0580   0.0700    0.0820 



   ( )VaR T
    0.1540   0.1734   0.2060    0.2020 

   ( )RVaR T
    0.7938   0.7494   0.7464    0.7113 

Table 3 Values of value at risk and relative value at risk when 0.12(1 0.2) =   

      1 0 12=0.5, 0.12(1 0.2), 0.17, 0.10, 0.05, 0.05, 0.2r     = + = = = = =  

    T        1      2      3      4 

    
TER     0.2237 0.2639    0.2937    0.3130 

   
TR ，

    0.0550    0.0750    0.0890    0.1000 

   ( )VaR T
    0.1687    0.1889    0.2047    0.2130 

   ( )RVaR T
    0.7541    0.7158    0.6970  0.6805 

       1 0 12=0.5, 0.12(1 0.2), 0.17, 0.10, 0.05, 0.2, 0.05r     = − = = = = =  

    T        1      2      3      4 

    
TER     0.1751    0.2012    0.2253    0.2532 

   
TR ，

    0.0350    0.0480    0.0580     0.0680 

   ( )VaR T
    0.1401    0.1532    0.1570    0.1748 

   ( )RVaR T
    0.8001    0.7614    0.6968    0.6903 

Table 4 Values of value at risk and relative value at risk when 1 0.17(1 0.2) =   

      1 0 12=0.5, 0.12, 0.17(1 0.2), 0.10, 0.05, 0.05, 0.2r     = = + = = = =  

    T        1      2      3      4 

    
TER     0.2007 0.2331    0.2486    0.2915 

   
TR ，

    0.0250    0.0400    0.0500    0.0600 

   ( )VaR T
    0.1757    0.1931    0.1986    0.2315 

   ( )RVaR T
    0.8754    0.8284    0.7989  0.7942 

       1 0 12=0.5, 0.12, 0.17(1 0.2), 0.10, 0.05, 0.05, 0.2r     = = − = = = =  

    T        1      2      3      4 

    
TER     0.1981   0.2338   0.2541    0.2748 

   
TR ，

    0.0650   0.0850   0.0950    0.1050 

   ( )VaR T
    0.1331   0.1488   0.1584    0.1698 

   ( )RVaR T
    0.6719   0.6364   0.6234    0.6179 

Table 5 Values of value at risk and relative value at risk when 0.10(1 0.2) =   

     1 0 12=0.5, 0.12, 0.17, 0.10(1 0.2), 0.05, 0.05, 0.2r     = = = + = = =  

    T        1      2      3      4 

    
TER     0.2091 0.2488    0.2682    0.2831 

   
TR ，

    0.0500   0.0694    0.0800    0.0900 

   ( )VaR T
    0.1591   0.1794    0.1882    0.1931 

   ( )RVaR T
    0.7608   0.7211    0.7017  0.6821 



      1 0 12=0.5, 0.12, 0.17, 0.10(1 0.2), 0.05, 0.05, 0.2r     = = = − = = =  

    T        1      2      3      4 

    
TER      0.1891   0.2223    0.2444    0.2623 

   
TR ，

     0.0400   0.0550    0.0650    0.0740 

   ( )VaR T
     0.1491   0.1673    0.1794    0.1883 

   ( )RVaR T
     0.7885   0.7526    0.7340    0.7179 

Table 6 Values of value at risk and relative value at risk when 12 0.2(1 0.2) =   

      1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2(1 0.2)r     = = = = = = +  

    T        1      2      3      4 

    
TER     0.2008 0.2326    0.2550    0.2718 

   
TR ，

    0.0390    0.0560    0.0660    0.0740 

   ( )VaR T
    0.1618    0.1760    0.1890    0.1978 

   ( )RVaR T
    0.8058    0.7567    0.7412  0.7277 

       1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2(1-0.2)r     = = = = = =  

    T        1      2      3      4 

    
TER     0.1985    0.2317    0.2534    0.2685 

   
TR ，

    0.0500    0.0650    0.0770    0.0870 

   ( )VaR T
    0.1485    0.1667    0.1764    0.1815 

   ( )RVaR T
    0.7481    0.7195    0.6961    0.6760 

 Since 2016, Europe union presents Insolvency II to carry out regulation of insurance companies. 

They use VaR as minimum capital requirement. However, VaR is positively related to the net value 

of assets, In fact, the insurance companies with high VaR is not necessary to have high risk. 

Considering both value at risk and relative value at risk can well solve this problem. 

3. Dynamically Expected Shortfall and Relative Expected Shortfall 

3.1 The calculation of dynamically expected shortfall and relative expected shortfall 

Expected shortfall can be written as 

 

( )

( )

( ) / ( )

(  ( ))
=

( )

T T

T T T

T T

ES T E R R VaR T   

E R R VaR R
                    

Pr R VaR R

 





= 





1         (7) 

Relative expected shortfall can be expressed as  



( )
( ) T

T

T

ES R
RES R

ER

                  


 =

                 (8) 

Since VaR has no explicit expression, we can only get approximated value of ES and RES by Monte 

Carlo simulation.  

Examples: Assume that the parameters of two stochastic processes are  
 

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, =0.2, 1,2,3,4r T    = = = = =   

Table7, Figure 5 and Figure 6 describe the change pattern of expected shortfall and relative expected 

shortfall with time, when =0.01,0.05 respectively. Table 1 and Table 7 indicate that the value of 

expected shortfall is greater than value at risk and relative expected shortfall is greater than relative 

value at risk at same time point and at same confidence level. It means that regulation is more 

prudent, and the financial institutions need to raise more capital in order to cope with extreme events 

and satisfy the regulation requirement. Please note capital is an expensive resource. Table 7 also 

indicates that expected shortfall increases with time, but relative expected shortfall decreases with 

time. It is necessary for regulator to consider relative expected shortfall besides expected shortfall 

in their decision.  

Table 7 Values of expected shortfall and relative expected shortfall when time term T  takes 

different values.  

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     = = = = = =  

    T         1       2      3       4 

   
TER  0.1997    0.2337   0.2563    0.2709 

   ( )ES T
     0.3856    0.4151   0.4266    0.4345 

   ( )RES T
     1.9309    1.7762   1.6645    1.6039 

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.01, 0.2r     = = = = = =  

    T         1       2      3       4 

   
TER  0.1997    0.2337   0.2563    0.2709 

   ( )ES T
     0.6478    0.6252   0.6319    0.6369 

   ( )RES T
     3.2252    2.6290   2.3612    2.2764 



 

 

Figure 5 The change pattern of ES and RES with time ( =0.05 ) 

 

Figure 6 The change pattern of ES and RES with time ( =0.01 ) 

 

3.2 Sensitive analysis for dynamically expected shortfall and relative expected shortfall 

Table 8 through Table 12 lists the results of sensitivity analysis. We find from Table 8 through Table 

12 that relative expected shortfall is most sensitive to the change of volatility of cumulative 

investment return, It is rather sensitive to the change of volatility of interest rate, return rate of long 

term, the speed of interest rate return back to the equivalent return rate of long term and correlation 

coefficient between cumulative investment return and interest rate, Increasing volatilities of interest 

rate will decrease both expected shortfall and relative expected shortfall. The main reason may be 
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that the increase of volatility of interest rate will lead the increase of cumulative investment return 

increase. However, increasing volatilities of cumulative investment return will increase both 

expected shortfall and relative expected shortfall. Increase of the correlation coefficient between 

cumulative investment return and interest rate will increase both expected shortfall and relative 

expected shortfall. Therefore, it is important to consider the impact of interest rate and its correlation 

on cumulative investment return. We also find that increase of equivalent return rate of long term 

will decrease both expected shortfall and relative expected shortfall. Decreasing the speed of interest 

rate returning back to the equivalent return rate of long term will increase both expected shortfall 

and relative expected shortfall. For all cases, the relative expected shortfall decreases with time, but 

the expected shortfall increases with time. 

Table 8 Values of expected shortfall and relative expected shortfall when =0.5(1 0.2)   

1 0 12=0.5(1 0.2), 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     + = = = = = =  

    T        1       2       3      4 

   
TER     0.2038    0.2282    0.2467    0.2661 

   ( )ES T
    0.3820    0.4143    0.4232    0.4359 

   ( )RES T
    1.8742    1.8155    1.7155    1.6380 

1 0 12=0.5(1-0.2), 0.12, 0.17, 0.10, 0.05, 0.05, 0.2r     = = = = = =  

    T        1       2       3       4 

   
TER     0.1939    0.2413     0.2602     0.3078 

   ( )ES T
    0.3930    0.4222     0.4290     0.4478 

   ( )RES T
    2.0268    1.7490     1.6490     1.4550 

Table 9 Values of expected shortfall and relative expected shortfall when . =0.12(1 0.2)   

1 0 12=0.5, 0.12(1 0.2), 0.17, 0.10, 0.05, 0.05, 0.2r     = + = = = = =  

    T         1      2      3      4 

   
TER      0.2288   0.2510    0.2828    0.2955 

   ( )ES T
     0.3723   0.4057    0.4182    0.4323 

   ( )RES T
     1.6272   1.6164    1.4787    1.4630 

1 0=0.5, 0.12(1 0.2), 0.17, 0.10, 0.05, 0.05, 0.2r     = − = = = = =  



    T        1       2       3       4 

   
TER     0.1795    0.2043     0.2181     0.2246 

   ( )ES T
    0.4025    0.4377     0.4491     0.4694 

   ( )RES T
    2.2419    2.1424     2.0585     2.0898 

Table 10 Values of expected shortfall and relative expected shortfall when 1=0.17(1 0.2)   

1 0 12=0.5, 0.12, 0.17(1 0.2), 0.10, 0.05, 0.05, 0.2r     = = + = = = =  

    T         1      2      3      4 

   
TER  0.2057    0.2308    0.2497    0.2627 

   ( )ES T
     0.4120    0.4472    0.4579    0.4725 

   ( )RES T
     2.0032    1.9374    1.8342    1.7986 

1 0 12=0.5, 0.12, 0.17(1 0.2), 0.10, 0.05, 0.05, 0.2r     = = − = = = =  

    T        1       2       3       4 

   
TER     0.2031    0.2328    0.2535     0.2708 

   ( )ES T
    0.3483    0.3779    0.3869     0.3974 

   ( )RES T
    1.7149   1.6235   1.5264    1.4676  

 

Table 11 Values of expected shortfall and relative expected shortfall when =0.10(1 0.2)   

1 0 12=0.5, 0.12, 0.17, 0.10(1 0.2), 0.05, 0.05, 0.2r     = = = + = = =  

    T         1      2      3      4 

   
TER      0.2161    0.2380    0.2666    0.2785 

   ( )ES T
     0.3700    0.4038    0.4143    0.4261 

   ( )RES T
     1.7121    1.6966    1.5540    1.5375 

1 0 12=0.5, 0.12, 0.17, 0.10(1 0.2), 0.05, 0.05, 0.2r     = = = − = = =  

    T        1       2       3       4 

   
TER     0.1923    0.2226    0.2311    0.2408 

   ( )ES T
    0.3940    0.4265    0.4417    0.4577 

   ( )RES T
    2.0494    1.9161    1.9113    1.9012 

Table 12 Values of expected shortfall and relative expected shortfall when 12 =0.2(1 0.2)   

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2(1 0.2)r     = = = = = = +  

    T         1      2      3      4 

   
TER      0.1992    0.2414    0.2611    0.2716 

   ( )ES T
     0.3962    0.4260    0.4332    0.4438 

   ( )RES T
     1.9885    1.7643    1.6589    1.6343 

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.2(1 0.2)r     = = = = = = −  



    T        1       2       3       4 

   
TER     0.1979    0.2370     0.2575     0.2820 

   ( )ES T
    0.3758    0.4042     0.4136     0.4254 

   ( )RES T
    1.8984    1.7054     1.6064     1.5986 

 

4. Determination of Dynamic Frequency Equivalent level of VaR and ES 

By referring to Li and Wang (2021) and Faroni et al. (2022), We present frequency equivalent level 

of VaR and ES which satisfies the following equivalent equation: 

) ( ) ( )c TES T VaR T=（                        (9) 

 By applying Monte Carlo simulation, we can find the quantile level of ( )c T   which satisfies 

equivalent equation (9). Examples: Assume that the parameters of two stochastic processes are  
 

1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, =0.2, 1,2,3,4r T    = = = = =  

Table 13 lists the values of ( )c T  when =0.01 and 0.05, 1, 2,3,4T =  respectively. Table 13 

denotes that the parameter deciding frequency equivalent levels, ( )c T   are greater than 

whatever =0.01 or 0.05. The values of ( )c T  decrease with time T. It is important to notice the 

errors between  ( )VaR T  and ( )cES T  is very small, the relative accuracy is greater or equal 

to 99.95%. 

        1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.05, 0.r     = = = = = =         

      T        1       2       3       4 

      c(T)    0.0763    0.0658   0.0611    0.0561 

  ( )VaR T
    0.1547    0.1727   0.1813    0.1900 

  ( )cES T     0.1548    0.1728   0.1815    0.1903 

 ( )cRVaR RES
    0.7765    0.7306   0.7156    0.6986 

        1 0 12=0.5, 0.12, 0.17, 0.10, 0.05, 0.01, 0.r     = = = = = =         

      T        1       2       3       4 

     c(T)    0.0780    0.0740   0.0670   0.0655 

  ( )VaR T
    0.2097  0.2257   0.2433   0.2509 

  ( )cES T     0.2096    0.2256   0.2432   0.2510 

( )cRVaR RES
    1.0524    1.0041   0.9679   0.9246 

 



 

Conclusions 

In this paper, we present dynamically relative value at risk (value at risk per unit investment return) 

in multi-periods. We give the formula of dynamically relative value at risk. We carry out sensitive 

analysis. The results indicate that both value at risk and relative value at risk are most sensitive to 

the change of the volatility of cumulative investment return. And also it denotes that both value at 

risk and relative value at risk are rather sensitive to the volatility of interest rate and to the correlation 

coefficient between interest rate and return rate of cumulative investment. Increasing volatility of 

interest rate will decrease value at risk but increase relative value at risk. Increase of correlation 

coefficient between volatilities of interest rate and volatility of return rate of cumulative investment 

will increase both value at risk and relative value at risk. And also increasing the volatility of return 

rate of cumulative investment will increase both value at risk and relative value at risk. We also 

discuss expected shortfall and relative expected shortfall with correlative stochastic processes of 

interest rate and cumulative investment return. The results show that the value of expected shortfall 

and relative expected shortfall are greater than those of value at risk and relative value at risk at 

same confidence levels. It means that using expected shortfall as minimum capital requirement will 

require financial institutions to raise more capital at expense of more capital cost. Therefore, the 

criterion of regulation is a double-edged sword. It is necessary for regulators to comprehensive 

consider the possible loss of extreme events and high capital cost to seek a most favorable balancing 

point. Finally, we approach the frequency equivalent level of VaR and ES. The results show that the 

frequency equivalent level ( )c T  decreases with time and it is greater than both 0.01 = and 

0.05. Our determination of frequency equivalent level can well help regulators to balance risks and 

benefits of financial institutions. 



 

References 

Acerbi, C, ,C, Nordio, and C, Sirtori. 2001. Expected shortfall as a tool for financial risk 

management. arXiv, arXiv:condmat/0102304. 

 

Acerbi, Carlo, and Dirk Tasche. 2002. On the coherence of expected shortfall. Journal of Banking 

& Finance 26, 1487–503. 

 

Cox,J.C, J.E.Ingersoll and S,A, Ross, 1980, The theory of the term structure of interest rates, 

Ecnometrica, 53, 385-407. 

Jorion, P., 2001, Value at risk, 2nd edition, copyright by McGraw-Hill,  

Klugman, Stuart A., Harry H. Panjer, and Gordon E. Willmot. 2012. Loss models: From data to 

decisions. Hoboken: John Wiley & Sons, vol.715. 

 

Mao, H. 2008, Analysis of value at risk when cumulative investment and interest rate is correlative 

stochastic process. Journal of Shanghai Second Polytechnic University (in Chinese), 25, 14-17. 

Markowitz, H., 1952, Portfolio selection, Journal of Finance, 7, 77-91. 

Linsmeier, Thomas J., and Neil D. Pearson. 2000. Value at risk. Financial Analysts Journal 56, 47–

67. 

Faroni, S., O. Le. Courtois and K. Ostaszewski, 2022. Equivalent risk indicators: VaR, TCE, and 

Beyond, Risks, 10, 142. 

 

Fuchs, Sebastian, Ruben Schlotter, and Klaus D. Schmidt. 2017. A review and some complements 

on quantile risk measures and their domain. Risks 5, 59. [ 

 

Wang, R,, 2021, An axiomatic Foundation for expected shortfall, Management Science, 67, 1413-

29. 

 

Li, H and R. Wang, 2022, PELVE: Probability equivalent level of VaR and ES, Journal of  

Econometrics, Forthcoming. 

 

 

Appendix 

1. Calculation of , , 1,2,3,4TR T =  

Produce two correlative stochastic processes’ random number 1  and 2 , which satisfies  

3 1 2= + 1  − ， 

where 1  and 2  follow standard normal distribution and  is correlative coefficient between 



two stochastic processes,   

Use equations (2) and (3) and combine equation (A1) to calculate the return rate of cumulative  

investment , 1, 2,3, 4TR T = , where 1( ) ( )TR r T r T = + , (A2) 

                                1 3( ) ( -1) ( ( -1))r T r T r T   = + − + .  (A3) 

If the frequency of , 1,2,3,4TR T =  equal to  , then  

we have ,T TR R =  

2. Calculation of ES 

Calculate , 1, 2,3, 4TR T = by simulation and count the number satisfying ( )TR VaR T . 

Let this number as q  and let cumulative sum of TR  be 1TR  . By using equation (7) and 

calculating 1 /

/ /

TR q
ES

q S T
= ,                 (A4) 

where S is the number of simulation, we obtain approximate value of ES.  

3. Calculation of ( )c T  

Let ( )TR VaR T −       (A5) 

For time T, count number q(T) which satisfies in-quality (A5).  

Let 
( )

( )=
q T

c T
S

              (A6) 

Then we get approximate value of ( )c T . 
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