
COMPARISON STUDY OF THRESHOLD 

MODELING IMPLEMENTION IN PYTHON & R

2023 HAWAII UNIVERSITY INTERNATIONAL CONFERENCES 

SCIENCE, TECHNOLOGY & ENGINEERING, ARTS, MATHEMATICS & EDUCATION  JUNE 7 - 9, 2023

PRINCE WAIKIKI RESORT, HONOLULU,  HAWAII

NAUTH, MIKHAIL 

DEPARTMENT OF DATA AND ANALYTICS 

NYC HEALTH & HOSPITALS, USA

QUEENS, NEW YORK 



Mr. Mikhail Nauth

Department of Data and Analytics

NYC Health + Hospitals, USA

Queens, New York

Comparison Study of Threshold Modeling Implementation in Python & R

Synopsis:

Extreme Value Analysis (EVA) focuses on rare events in large datasets. The Generalized

Extreme Value Distribution (GEV) and the Generalized Pareto Distribution (GPD) are two

common probability distributions used in (EVA). Threshold Modeling is an important

aspect of this analysis. Although R is commonly used for Threshold Modeling, this paper

shows that a Python-exclusive library can perform all the necessary functions for this type

of analysis.
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Abstract 

This paper explores the use of Python in performing Extreme Value Analysis, specifically 

Threshold Modeling, and compares it to the capabilities of R. The study found that Python's 

SciPy library is capable of performing all the necessary functions related to Threshold 

Modeling, with comparable accuracy to R but with clearer and more legible visualizations. 

This result is significant for further research planned in Time Series Analysis and Machine 

Learning.  

1. Introduction / Objective & Goals

Currently, most statistical testing and analyses are done in the R programming language. This 

includes Extreme Value Analysis (EVA) and more specifically, Threshold Modeling. There is 

a wide range of statistical R packages that are able to perform these analyses, produce plots, 

create randomized datasets and output predictive models, such as ‘extRemes’, ‘Rsafd’, and 

‘SpatialExtremes’ (Gilleland et al., 2012). However, the Python programing language is more 

popular and considered more general-purpose. Additionally, in terms of machine learning, 

Python is the preferred choice (Kumar, 2021). 

EVA is especially useful when looking at time series in fields such as climatology and finance. 

Coupling this analysis with machine learning is much more convenient in Python than R since 

there are established libraries and algorithms in Python. However, Python isn’t as robust as R 

in the field of EVA. 

While there are some libraries in Python that can be manipulated to obtain the same results as 

in R, many of them are either not fully built, i.e., they don’t house all the necessary functions 
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needed for Threshold Modeling, or they have compatibility issues since they rely on R for their 

functions. Therefore, the goal of this paper is to show that a Python-exclusive library can 

perform all the necessary functions related to Threshold Modeling, while matching the results 

of the R packages. 

2. Background & State of the Art

In order to proceed with the Python-exclusive library, it is imperative to understand the 

definition and purpose of EVA. This section will cover the family of distributions used in EVA 

and discuss current programming packages. 

2.1 Extreme Value Analysis 

EVA studies the occurrences of rare events i.e., values in a large dataset with a low probability 

of occurring. In many fields, these extreme values are treated as outliers. However, in fields 

such as hydrology, climatology, oceanography, structural engineering, epidemiology and 

finance keen attention is paid to these extreme events.  

For example, in studying temperature magnitudes, the overall distribution of values can be 

examined, however, in order to determine the likelihood of heat waves or cold outbreaks, the 

extreme values are the primary focus (Pinheiro & Grotjahn, 2015). 

2.2 Extreme Value Distributions 

Extreme Value Distributions (EVD) are used in Extreme Value Analysis to model rare events. 

The majority of probability distributions are concerned primarily with the entire random 

sample. In the case of the Gaussian distribution, for example, it assigns larger probabilities to 

values closer to the mean and smaller probabilities to values in the tails. EVD’s are concerned 

with those tails. Typically, the tails of an EVD are much thicker than a standard normal 

distribution (two-tails) or an exponential distribution (one-tail) (Carmona, 2013). One method 

used to determine if a dataset would be considered an EVD is a Q-Q plot.  

2.2.1 Generalized Extreme Value Distribution 

Fig. 1: Q-Q Plot of the Standard Normal Distribution vs. the S&P 500 Weekly Stock Price 

Figure 1 compares the standard normal distribution to the S&P 500 Weekly Stock Price data, 

which displays the heavier tails. This strongly suggests that an EVD would be appropriate to 



3 

fit the dataset. In Figure 2 below, the exponential distribution is used to compare its quantiles 

to the Property Claims Services data, which is a one-tailed distribution. Again, the plot suggests 

an EVD would be appropriate to fit the data because of the heavier tail. 

Fig. 2: Q-Q Plot - Exponential Distribution (mean = 1) vs. the PCS Data 

The first of these EVD’s is the Generalized Extreme Value Distribution (GEV). The GEV is a 

family of continuous probability distributions, including the Gumbel, Frechet and Weibull 

distributions. The cumulative distribution function for the GEV is: 

𝐹𝜇, 𝜎, 𝜉(𝑥) = exp{− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]

−1
𝜉⁄
} (1) 

The GEV depends on the location, scale and shape parameters: 𝜇; 𝜎; 𝜉 (Carmona, 2013). 

The focus here, however, will be on another EVD: the Generalized Pareto Distribution. 

2.2.2 Generalized Pareto Distribution 

The Generalized Pareto Distribution (GPD) also focuses on extreme values, however, while 

the GEV focuses on the maximum values at specific intervals, the GPD looks at all data points 

above a specified threshold. In other words, this distribution is primarily used to model the tails 

of other distributions (Pinheiro & Grotjahn, 2015). The cumulative density function for the 

GDP is as follows: 

𝐹𝜉(𝑥) = {
1 − (1 + 𝜉𝑥)

−
1

𝜉 = 1 −
1

(1+𝜉𝑥)
1
𝜉

𝑖𝑓𝑥 > 0,

0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (2) 

The shape parameter, 𝜉, is the primary parameter for the GPD, however, it is also affected by 

a shift and scale parameter, 𝑚  and 𝜆 , respectively. With these parameters, the cumulative 

density function becomes: 

𝐹𝜉(𝑥) = {
1 − (1 + 𝜉

𝑥−𝑚

𝜆
)
−
1

𝜉
𝑓𝑜𝑟𝜉 ≠ 0,

1 − exp{−
𝑥−𝑚

𝜆
}𝑓𝑜𝑟𝜉 = 0.

(3) 

It is important to note that if 𝜉 > 0, then this is just an ordinary pareto distribution with shape 

parameter, 𝜉. And if 𝜉 = 0 and 𝑚 = 0, then this corresponds to the exponential distribution 

with scale parameter, 𝜆. 

GPD’s allow for a continuous range of possible shape parameters that lead to the ordinary 

Pareto, exponential and beta distributions. This feature allows the data to essentially decide 
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which distribution is most appropriate (Carmona, 2013). GPD’s have three basic forms, each 

corresponding to a limiting distribution of exceedance data from a different class of underlying 

distributions: 

• Distributions whose tails decrease exponentially, such as the standard normal 

distribution, lead to a generalized Pareto shape parameter of zero. 

• Distributions whose tails decrease as a polynomial, such as Student's t-distribution, lead 

to a positive shape parameter. 

• Distributions whose tails are finite, such as the beta distribution, lead to a negative 

shape parameter. 

 

As previously mentioned, the GPD is primarily used to model the tails of other distributions. 

Additionally, these tails (extreme values) have their own probability distribution (Carmona, 

2013). In the case of the GPD, the excess distribution of the values over a specified threshold, 

𝑙, is defined as: 

𝐹𝑙(𝑥) = ℙ{𝑋 − 𝑙 ≤ 𝑥|𝑋 > 𝑙} =
𝐹(𝑥+𝑙)−𝐹(𝑙)

1−𝐹(𝑙)
, 𝑥 ≥ 0.                                (4) 

The resulting cumulative density functions is: 

𝐹𝑙(𝑥) = 1 − [1 + 𝜉
𝑥

𝜆+𝜉(𝑙−𝑚)
]
−
1

𝜉
                                               (5) 

 

Appendix A lays out the derivation of the cumulative density function for the excess 

distribution. It is evident that Eq. (5) has the same form as Eq. (3), when 𝜉 ≠ 0. Therefore, for 

a GPD, the excess distribution is another GPD with the following parameters: 

• 𝑚′ = 0 

• 𝜆′ = 𝜆 + 𝜉(𝑙 − 𝑚) 

• 𝜉′ = 𝜉 

 

The location parameter is now zero, since there is no shift in the extreme values. The scale is 

updated since the extreme values are considerably greater than or less than the center of the 

distribution. Finally, the excess distribution has the same shape parameter as the original. 

 

In the upcoming sections, this phenomenon will be used to model the extreme values of some 

datasets. Additionally, the method for determining the threshold, 𝑙, will be discussed. 

 

2.3 Threshold Modeling in R and Python 

There is a plethora of libraries in R that have some capabilities to perform Threshold Modeling. 

These include ‘extRemes’, ‘Rsafd’, ‘SpatialExtremes’, ‘POT’, and ‘texmex’ to name a few 

(Gilleland, 2012). In the following sections, ‘SpatialExtremes’ is used to generate random 
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samples in R, while ‘Rsafd’ is used to perform the threshold modeling. 

 

In Python, however, options are limited. For example, the ‘Tensorflow’ library has functionality 

that can return random samples from a GPD given location, scale and shape parameters (Abadi, 

2016). However, it is unable to fit a GPD to a dataset. The ‘Scikit-extremes’ library seems 

promising because it contains documentation for the GEV distribution. Nevertheless, the 

functionality for the Generalized Pareto Distribution still needs to be built (Correoso, 2019). 

 

The well-known library of SciPy is capable of generating random samples from a GPD and 

can fit a dataset, as well as return the maximum likelihood estimators for each parameter. 

However, there is no built-in functionality for modeling extreme values (Virtanen, 2020). 

Finally, there is a library called ‘thresholdmodeling’ that is designed to perform threshold 

modeling. However, there is no functionality for generating random samples from a GPD and 

it can only fit a GPD to an excess distribution above a specified threshold. Lastly, the functions 

in this library rely on R functions from the ‘POT’ package to operate (Lemos et al, 2013). 

 

3. Implementation of Threshold Modeling in Python 

Using some real-world datasets, the upcoming sections will compare the outputs of threshold 

modeling in R with the results of Python libraries, as well as creating new functionality in SciPy. 

 

3.1 One-Tailed Distribution 

The Property Claim Services (PCS) Index is the year-to-date aggregate amount of total damage 

reported in the United States to the insurance industry. Each index value represents $100 

million worth of damage. For example, a value of 72.4 for the national index in 1966, means 

that $(72.4x100) million (i.e., $7.24 billion) in damage was recorded that year (Carmona, 2013). 

 

Table 1: First 5 rows of the PCS Data 

Timestamp Amount (in $100 million) 

13 4 

16 0.07 

46 0.35 

60 0.25 

87 0.36 

The first column in Table 1 contains timestamps for the catastrophic events, which are 

identified as codes. The focus, however, will be on the 2nd column: the amount of total damage. 

With this dataset, the focus is on modeling the larger costs of total damage (extreme values). 

The GPD will be used here, but is a GPD appropriate for this dataset? 
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Fig. 3: Q-Q Plot of PCS dataset vs. random GPD distribution using (a) SciPy and (b) ‘Rsafd’ 

 

Based on the Q-Q plots in Figure 3, the PCS data closely follows a straight line except for a 

few outliers. Therefore, it is safe to say that a GPD would be appropriate for fitting this dataset. 

It is important to note that in Figure 3b, there is no straight-line indicator as in Figure 3a. 

 

3.2 Threshold Modeling 

The threshold value for the PCS dataset will be set to 4. Thus, any value above 4 will be 

considered an extreme value. Later on, determining this value will be discussed. 

 

The code block in Appendix B outputs the scale (lambda, 𝜆) and shape (xi, 𝜉) parameters for 

the extreme values (greater than the threshold of 4) for the PCS dataset. 

 

The first Python library to which these results will be compared is the ‘thresholdmodeling’ 

library, mentioned earlier. Initial testing of the PCS data with this library returned large and 

clunky outputs, which will not be included here. However, further investigation into the 

underlying functions of this package revealed a dependency on R. The primary operations were 

completed by the ‘POT’ package. The code snippet in Appendix C is used to allow the ‘POT’ 

package to run in Python. 

 

In Appendix D, the ‘POT’ package output matches the initial run in R. The ‘POT’ function of 

‘fitgpd’ requires the type of estimation that will be used. Some examples of these include L-

moments, moments and maximum goodness-of-fit estimators. Only the maximum likelihood 

estimator (‘mle’) will be used. The final library to test will be the SciPy library. It is important 

to note here than in both the ‘Rsafd’ and ‘POT’ runs, the location parameter is assumed to be 

0. In SciPy, the location parameter has to be initialized to 0 because the GPD function attempts 

to fit all parameters with respect to the default GPD. 

   
Fig. 4: Q-Q Plot from (a) ‘Rsafd’, (b) ‘POT’ and (c) SciPy of excess values from PCS dataset 

 

The SciPy library’s output in Appendix E is extremely close to the previous runs from the R 
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packages. However, this does not necessarily mean that a GPD is the most appropriate 

distribution for this extreme value dataset. In order to confirm that a GPD is desirable, the Q-

Q plot of the upper tail is examined. Figure 4 above displays the Q-Q plots from the ‘Rsafd’ 

package, ‘POT’ package and SciPy library, respectively. For all 3 plots, most of the points fall 

on a straight line, which is a strong indication that a GPD is appropriate. 

 

3.2.1 Shape Plots 

In the previous section, the threshold value of 4 was not arbitrarily chosen. Before choosing a 

threshold value, the following must be considered: 

• The threshold can’t be too large because there will be too few points to fit. 

• The threshold can’t be too small because points from the center of the distribution may 

be included (Carmona, 2013). 

 

The best way to choose this value is via a shape plot. The shape plot graphs the estimates of 

the shape parameter, as it changes with the values of the threshold used to produce the estimates. 

In other words, the threshold, 𝑙, is the independent variable, while the shape parameter, 𝜉, is 

the dependent variable. The shape plot from the ‘Rsafd’ package in R is shown in Figure 5. 

 
Fig. 5: Shape plot of PCS dataset from ‘Rsafd’ in R 

              

    
Fig. 6: Shape plot and threshold level from (a) ‘POT’ package and (b) SciPy library 

 

In the ‘thresholdmodeling’ library in Python, there is a function called Parameter Stability plot, 

which is the same as the shape plot. However, because of the outdated underlying functions, it 

returns errors. Upon further investigation, the Parameter Stability plot loops through various 

thresholds, fits a GPD to each threshold from the ‘POT’ package and plots the threshold value 

vs. the shape parameter. Using this logic, shape plot functions were created in Python using 

both the ‘POT’ package and the SciPy library, where various thresholds were looped through 
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and plotted vs. the respective resulting shape parameter. Figure 6 above displays the respective 

shape plots with the portion of data points above the threshold mark. For the threshold range 

of 0-8, all shape plots are extremely similar. Since about 10% of the points are over the 

threshold of 4, this is a valid choice.  

 

3.2.2 Estimations 

With a threshold selected and a GPD fit to the excess values, a new GPD can be estimated and 

compared to the original dataset. 

   

   
Fig. 7: (a) Original PCS data vs. Estimated data from (b) ‘Rsafd’, (c) ‘POT’ and (d) SciPy 

 

The original dataset’s shape is estimated well by all 3 libraries. As explained earlier, the scale 

of the estimated datasets changes by a factor of 𝜆′ = 𝜆 + 𝜉(𝑙 − 𝑚) . While the estimated 

dataset from the SciPy library does produce a few outliers, the majority of data points matches 

the other R-based packages. 

 

3.3 Two-Tailed Distribution 

In order for the potential Python-exclusive library to be considered thorough, it needs to be 

able to perform the appropriate analyses on two-tailed distributions, as well. The weekly 

closing values of the S&P 500 index will be examined here; more specifically the weekly log-

returns (WSP), which makes more sense considering continuous time discounting (Carmona, 

2013). 

 

Table 2: (a) Weekly closing values of S&P 500, (b) Weekly log-return of S&P 500 

Index Log-Return 

1 -0.019 

2 -0.01728 

3 -0.03133 

4 0.006631 

5 -0.00933 

 

Index Return 

1 59.5 

2 58.38 

3 57.38 

4 55.61 

5 55.98 
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The first step is to obtain a shape plot in order to determine the appropriate threshold. It is 

important to keep in mind that there can be two shape plots: one for the upper and one for the 

lower thresholds. Figure 8 shows the shape plots for the upper threshold of the WSP data. 

   

  
Fig. 8: Upper shape plot of WSP Data from (a) ‘Rsafd’, (b), ‘POT’ and (c) SciPy 

   

  
Fig. 9: Lower shape plot of WSP Data from (a) ‘Rsafd’, (b), ‘POT’ and (c) SciPy 

 

Comparing the shape plot from ‘Rsafd’ and SciPy in Figure 8, it is evident that both plots are 

very similar. However, the shape plot from ‘POT’ does not return anything of value. The major 

setback with the ‘POT’ package is that when the threshold produces a shape parameter close to 

zero, it isn’t able to plot the output correctly. It is unclear what specifically in the function is 

causing this. Nevertheless, based on the clearer shape plots, 0.02 will be used as the threshold 

level. 

 

In Figure 9, the shape plots from SciPy and ‘Rsafd’ are once again showing strong similarities. 

The shape plot from ‘POT’ is also showing some similarity at higher thresholds, which in 

actuality is lower thresholds (since the ‘POT’ package only does upper thresholds, the WSP 

data had to be ‘flipped’ in order for the analysis to be performed here). Once again, when the 

shape parameter is close to zero, the shape plot from ‘POT’ isn’t very informative. Based on 

the shape plots, -0.02 is a strong threshold value to use. 

 

Looking at the Q-Q plots for the upper and lower tails in Figure 10, it is clear that a GPD would 

be a suitable fit for the respective datasets. 
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Fig. 10: Upper and lower tail Q-Q plot of WSP Data 

 

Completing the analysis, Figure 11 displays the original WSP dataset with the estimated 

datasets from ‘Rsafd’, ‘POT’ and SciPy. Similar to the PCS data analysis, the SciPy estimation 

for the WSP data proves to be just as reliable as the others. 

 

 
Fig. 11: (a) Original WSP data vs. Estimated data from (b) ‘Rsafd’, (c) ‘POT’ and (d) SciPy 

 

4. Conclusion & Future Work 

In the attempt to build a Python-exclusive library for performing Extreme Value Analysis, 

experimental functions were compared to already developed R-based functions. Based on the 

numerical and graphical results, there is sufficient evidence that the SciPy library in Python is 

capable of performing the necessary functions equivalent to its R counterparts. These functions 

include generating random samples from GPD parameters, creating shape plots, fitting a 

Generalized Pareto Distribution to a dataset (one-tailed or two-tailed) and plotting estimated 

data based on given parameters. 

 

The impetus of this work is based in Time Series Analysis. Thus, further work is planned to 

extend Threshold Modeling testing to include this analysis. There is a number of Python 

libraries that are used in Time Series Analysis and this work will merge Extreme Value Analysis 

with time series’ types such as Auto Regressive and Moving Average. 
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6. Appendices

Appendix A – Cumulative Density Function for Excess Distribution 

𝐹𝑙(𝑥) =
1−(1+𝜉(

𝑥+𝑙−𝑚

𝜆
))

−
1
𝜉
−(1−(1+𝜉(

𝑙−𝑚

𝜆
))

−
1
𝜉)

1−(1−(1+𝜉(
𝑙−𝑚

𝜆
))

−
1
𝜉
)

𝐹𝑙(𝑥) = 1 − [
(1+𝜉(

𝑥+𝑙−𝑚

𝜆
))



(1+𝜉(
𝑙−𝑚

𝜆
))

 ]

−
1

𝜉

𝐹𝑙(𝑥) = 1 − [1 +
𝜉𝑥

(𝜆+𝜉𝑙−𝜉𝑚)
]
−
1

𝜉

𝐹𝑙(𝑥) = 1 − [1 + 𝜉
𝑥

𝜆+𝜉(𝑙−𝑚)
]
−
1

𝜉
(5) 

𝐹𝑙(𝑥) = 𝐹𝑚′,𝜆′,𝜉′(𝑥)

https://doi.org/10.1038/s41592-019-0686-2
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Appendix B – Code Block from R package, ‘Rsafd’ 

pcsest = gpd.tail(pcs, one.tail = T, upper = 4) #PCS data only has 

positive values so only one tail is used: upper 

print(pcsest$upper.par.ests) #scale and shape parameters 

print(pcsest$n.upper.exceed) #number of points that are above the 

threshold 

print(1-pcsest$p.less.upper.thresh) #proportion of data points above 

threshold 

   lambda xi 

4.5014926 0.8027783 

[1] 31

[1] 0.08136483

Appendix C – Importing R functionality for ‘thresholdmodeling’ library in Python 

from rpy2.robjects.packages import importr 

import rpy2.robjects.packages as rpackages 

from rpy2.robjects.vectors import FloatVector 

import rpy2 

base = importr('base') 

utils = importr('utils') 

utils.chooseCRANmirror(ind=1) 

utils.install_packages('POT') #installing POT package 

Appendix D – Output from ‘POT’ package 

POT = importr('POT') 

pcsfit = POT.fitgpd(FloatVector(pcs), 4, est = 'mle') 

print(pcsfit[0]) #scale and shape 

print(pcsfit[12]) #number of points above the threshold 

print(pcsfit[13]) #proportion of points above the specified threshold 

scale     shape 

4.5015133 0.8027741 

[1] 31

[1] 0.08136483

Appendix E – Output from SciPy library 

pcsupp1 = pcs[pcs>4] 

pcsupp = pcsupp1 - 4 

pcsuppfit = genpareto.fit(pcsupp, floc = 0) 

print('Shape = {0}, scale = {1} and location = 0.'.format(pcsuppfit[0], 

pcsuppfit[2])) 

print('Number of points over threshold =', len(pcsupp)) #number of 

points 

print('Proportion of points over threshold =', len(pcsupp)/len(pcs)) 

#proportion of points 

Shape = 0.8027661376803175, scale = 4.501542945509427 and location = 0. 

Number of points over threshold = 31 

Proportion of points over threshold = 0.08136482939632546 
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